

عدد خاص بالمؤتمرالليبي الدولي للعلوم

 (II) التطبيقية والهندسية دورته الثانية
92-03 /03 /9392

 م 10/9392/ 30 تم نشرها على الموقع بتاريخ:و م6/03/2024 تم استلام الورقة بتاريخ:

 للمجلة الدولية للعلوم والتقنية حقوق الطبع محفوظة

Copyright © ISTJ 1

Optimizing Round Robin Using Machine Learning Models (KNN) in

CPU scheduling

http://www.doi.org/10.62341/sana0913

Safaa Taher Abdelhameed 1, Noor Alhode Mohamed Alkikly 2,
 Ferdaws Omar Alkharbash0

1.2.3 University of Zawia – Faculty of Science - Department of Computer Science

1 lolasafoo172@gmail.com, 2 nooralki14@gmail.com,3 std.100053@zu.edu.ly

Abstract

 Round Robin is considered as one of the most practically recognized process

scheduling algorithms in CPU scheduling because it is simple and fair. However, the

efficiency of Round Robin depends a lot upon the selection of an optimal time quantum.

If the quantum is too small, then frequent context switches are needed by the CPU;

therefore, the overhead increases, and thus, the average waiting time for the processes

also becomes long. As a result, system performance is reduced as more and more CPU

time is used up in context switching, instead of task execution. it may behave similarly

to the First Come First Serve (FCFS) algorithm if the time quantum is excessively long,

which leads to extended average waiting time. This paper proposes an improved Round

Robin algorithm by incorporating machine learning, which optimally determines the

time quantum dynamically. More precisely, the K-Nearest Neighbors algorithm will be

used, with NumPy in charge of data processing, for the runtime prediction of an optimal

time quantum considering characteristics of processes. The experimental results showed

a considerable improvement in the parameters of average waiting, turnaround time, and

the number of context switches with respect to the traditional Round Robin algorithm.

Results indicated that machine learning efficiently modifies the predictable scheduling

algorithms to make the scheduling process adaptive and efficient in operating systems.

Key words: dynamic round robin, classical round robin, burst time, machine learning.

http://www.doi.org/10.62341/sana0913
mailto:Lolasafoo172@gmail.com
mailto:std.100053@zu.edu.ly
mailto:std.100053@zu.edu.ly

عدد خاص بالمؤتمرالليبي الدولي للعلوم

 (II) التطبيقية والهندسية دورته الثانية
92-03 /03 /9392

 م 10/9392/ 30 تم نشرها على الموقع بتاريخ:و م6/03/2024 تم استلام الورقة بتاريخ:

 للمجلة الدولية للعلوم والتقنية حقوق الطبع محفوظة

Copyright © ISTJ 2

في جدولة وحدة (KNN) تحسين خوارزمية الجولة الدائرية باستخدام نماذج التعلم الآلي
 المعالجة المركزية

 ³، فردوس عمر الخرباش ²، نور الهدى محمد الككلي ¹طاهر عبد الحميد الصفاء

 قسم علوم الحاسوب -كلية العلوم –جامعة الزاوية ¹²³

lolasafoo172@gmail.com, 2 nooralki14@gmail.com,3 std.100053@zu.edu.ly

 الخلاصة
في جدولة وحدة واحدة من أكثر خوارزميات جدولة العمليات (Round Robin) يُعتبر خوارزمية الجولات الدائرية

شهرةً من الناحية العملية، لأنها بسيطة وعادلة. ومع ذلك، تعتمد كفاءة خوارزمية الجولات (CPU) المعالجة المركزية
إذا كانت الفترة الزمنية قصيرة جدًا، فإن .(Time Quantum) الدائرية بشكل كبير على اختيار فترة زمنية مثالية

إلى تبديل السياق بشكل متكرر؛ وبالتالي، يزداد العبء الزائد، ويصبح متوسط وقت وحدة المعالجة المركزية تحتاج
الانتظار للعمليات طويلًً أيضًا. نتيجةً لذلك، تنخفض أداء النظام حيث يتم استهلًك المزيد والمزيد من وقت وحدة

تي أولًا يخدم ه لخوارزمية من يأالمعالجة المركزية في تبديل السياق بدلًا من تنفيذ المهام. قد تتصرف بشكل مشاب
إذا كانت الفترة الزمنية طويلة بشكل مفرط، مما يؤدي الي متوسط وقت الانتظار طويل. يقترح هذا (FCFS)أولا

البحث تحسينًا لخوارزمية الجولات الدائرية من خلًل دمج التعلم الآلي لتحديد الوقت المثالي ديناميكيًا. بشكل أكثر
لمعالجة البيانات، NumPy مع مكتبة (K-Nearest Neighbors) تخدام خوارزمية الجار الأقربتحديدًا، سيتم اس

للتنبؤ الفوري بوقت مثالي للفترة الزمنية بناءً على خصائص العمليات. أظهرت النتائج التجريبية تحسنًا كبيرًا في
ارت رزمية الجولات الدائرية التقليدية. أشمتوسط وقت الانتظار، ووقت الإنهاء، وعدد تبديلًت السياق مقارنةً بخوا

النتائج إلى أن التعلم الآلي يقوم بتعديل خوارزميات الجدولة التقليدية بكفاءة لجعل عملية الجدولة تكيفية وأكثر كفاءة
 .في أنظمة التشغيل

 الآلي.جولة روبن الديناميكية، جولة روبن الكلًسيكية، وقت التشغيل، التعلم الكلمات المفتاحية:

Introduction

 An Operating System (OS) serves as the essential interface between computer

hardware and the user, managing and coordinating hardware resources among various

application programs. With the evolution of modern operating systems, which have

transitioned from handling single tasks to supporting multitasking environments, the

role of CPU scheduling has become increasingly vital. In these environments, processes

mailto:Lolasafoo172@gmail.com
mailto:std.100053@zu.edu.ly
mailto:std.100053@zu.edu.ly

عدد خاص بالمؤتمرالليبي الدولي للعلوم

 (II) التطبيقية والهندسية دورته الثانية
92-03 /03 /9392

 م 10/9392/ 30 تم نشرها على الموقع بتاريخ:و م6/03/2024 تم استلام الورقة بتاريخ:

 للمجلة الدولية للعلوم والتقنية حقوق الطبع محفوظة

Copyright © ISTJ 3

run concurrently, and CPU scheduling determines how processes are assigned to the

available CPUs, directly impacting system performance.

The primary goal of CPU scheduling is to optimize various performance metrics, such

as maximizing CPU utilization and throughput while minimizing response time, waiting

time, turnaround time, and the number of context switches [1]. Scheduling can be either

preemptive, where a process may be interrupted to allow a higher-priority process to

execute, or non-preemptive, where a process runs to completion or voluntarily vintages

the CPU when it requires another resource, like input/output operations. [2].

This paper introduces a machine learning-based approach to optimize the RR algorithm.

By using NumPy for data manipulation and the K-Nearest Neighbors (KNN) algorithm

for predicting an optimal time quantum, we aim to dynamically adjust the scheduling

parameters, improving overall system performance [3].

Among the many CPU scheduling algorithms, Round Robin (RR) is widely recognized

for its simplicity and fairness. The RR algorithm assigns a fixed time quantum to each

process in the ready queue, cycling through the processes in a turn-by-turn manner.

However, the effectiveness of the RR algorithm is heavily dependent on the choice of

time quantum. A larger time quantum can cause the system to resemble a First Come

First Serve (FCFS) scheduler, while a smaller time quantum may result in excessive

context switching, leading to reduced overall efficiency [5].

This paper introduces a machine learning-based approach to optimize the Round Robin

algorithm by dynamically adjusting the time quantum. Utilizing NumPy for data

manipulation and the K-Nearest Neighbors (KNN) algorithm for predicting an optimal

time quantum, the proposed method aims to enhance overall system performance. By

addressing the challenge of selecting an appropriate time quantum, this approach seeks

to strike a balance between minimizing context switches and ensuring efficient CPU

utilization, thereby improving the efficiency of the RR algorithm in diverse processing

environments.

Preliminaries

 A program is essentially a passive structure, symbolized by a file containing a

series of instructions. Processes, on the other hand, are active structures that are

identified by a program counter that indicates the next instruction to be performed and

a collection of associated resources. An executable file becomes a process as it is put

into memory, replacing its former state as a program. These processes can then be

assigned different statuses and be given access to system resources, including the CPU:

NEW: A new version of the process has been developed.

RUNNING: The CPU is actively executing the process.

WAITING: The process is awaiting a happening, like the finish of an input/output

operation.

READY: The process is set up and waiting on a processor.

TERMINATED: The process is no longer active after its execution is complete.

عدد خاص بالمؤتمرالليبي الدولي للعلوم

 (II) التطبيقية والهندسية دورته الثانية
92-03 /03 /9392

 م 10/9392/ 30 تم نشرها على الموقع بتاريخ:و م6/03/2024 تم استلام الورقة بتاريخ:

 للمجلة الدولية للعلوم والتقنية حقوق الطبع محفوظة

Copyright © ISTJ 4

The process in the ready queue will be carried out by the processor. The process status

now becomes running at this point. When the operating process is finished, it will

terminate and change its status to ended. An interruption can occasionally cause the

operating process to be preempted. As a result, the operating process will be forced to

switch to the later-scheduled ready state. Because it is waiting for an I/O event to

happen, a running process may switch to the waiting state. Once the I/O event has

finished, the waiting process may return to the ready state. It should be remembered that

multiple processes may be waiting and prepared at the same time, but only one process

may be given a CPU at a time [6].

The term "burst time" refers to the amount of time the process needs to use the CPU.

Arrival time is the moment a process enters the queue to be performed. Waiting time is

the length of time a process has been waiting in the ready queue, whereas turnaround

time is the total amount of time it takes to finish a certain process. Response time: It can

be described as the amount of time that pass by between the process's submission of a

request and its initial response. The scheduler chooses any process from queues within

a routine to execute in a way that optimizes load balancing.

 [1].

Related work

 The Round Robin (RR) algorithm is a simple and effective CPU scheduling

method that assigns a fixed time quantum to each process in a circular technique. While

it is recognized for its fairness and ease of use, the RR algorithm does encounter some

issues, such as increased context switching overhead when the time quantum is set too

short, or it may behave similarly to the First Come First Serve (FCFS) algorithm if the

time quantum is excessively long. Traditional optimization techniques for RR typically

rely on static methods or situational alters. For example, [7] proposed a framework that

enhances the time quantum through a grid search method. Their approach is statistically

verifiable and shows better performance than existing methods. [8] presented the

Variant On Round Robin (VORR-KNN) algorithm, which expands on the original RR

algorithm. The VORR-KNN seeks to enhance CPU scheduling by minimizing the

average waiting time, average turnaround time, and the frequency of context switches.

It accomplishes this by determining the time quantum based on the median of burst

times, allowing it to better adapt to different workloads.

Dynamic Round Robin (DRR) algorithms have been created to overcome the drawbacks

of static time quantum. These algorithms modify the time quantum based on the

remaining burst time of processes, leading to more effective scheduling. [2] introduced

the "Improved Half-Life Variable Quantum Time with Mean Time Slice Round Robin

CPU Scheduling (ImHLVQTRR)" algorithm, which significantly improves average

waiting time and turnaround time while also reducing context switching compared to

traditional RR and other existing methods. Another notable development in DRR is the

"Dynamic Round Robin with Controlled Preemption" (DRRCP) algorithm, presented

by [6]. DRRCP reduces unnecessary context switching by implementing a dynamic

quantum time and lowers average waiting and turnaround times. Furthermore, it features

عدد خاص بالمؤتمرالليبي الدولي للعلوم

 (II) التطبيقية والهندسية دورته الثانية
92-03 /03 /9392

 م 10/9392/ 30 تم نشرها على الموقع بتاريخ:و م6/03/2024 تم استلام الورقة بتاريخ:

 للمجلة الدولية للعلوم والتقنية حقوق الطبع محفوظة

Copyright © ISTJ 5

a mechanism that allows processes that have completed 95% of their execution to finish

without preemption, thereby optimizing CPU resource utilization.

Advances in machine learning in recent times have created new opportunities for

dynamic CPU scheduling optimization. The application of machine learning approaches

to ascertain the ideal time quantum in the RR algorithm was investigated by [3]. Their

study highlights how crucial time quantum is to attaining CPU use efficiency and

fairness. They were able to forecast the ideal time quantum by using regression models

like Polynomial and Linear Regression and classification models like Random Forest

Classifier and K-Nearest Neighbors (KNN). Their findings showed that machine

learning might improve system performance overall and significantly reduce average

waiting times.

Even with these developments, there is still little research being done on the use of

machine learning models like KNN for CPU scheduling optimization. In order to close

this gap, this study presents a new approach that uses machine learning to promote more

effective process scheduling by combining KNN and RR scheduling.

Methodology

 We used Visual Studio Code (VS Code) for local development because of its strong

Python support and sophisticated debugging features. We also utilized Google Colab, a

cloud-based platform that offers free access to GPU and TPU processing capacity, to

help with effective model training and experimentation.

Ten randomly generated processes are produced via a Python script we wrote to

imitate the process scheduling environment. The following characteristics apply to each

process:

Process ID: A special number is given to every process.

Arrival Time: Generated at random within a predetermined range to mimic when

each process accesses the system.

Burst Time: A variable that is produced at random to indicate how long each process

needs to execute.

The classic Round Robin (RR) scheduling method goes through each process one after

the other, giving each a fixed time quantum. If a process cannot complete its execution

within this time limit, it is preempted and placed to the rear of the queue. This method

considers scheduling fairness, but it can lead to inefficiencies if the time quantum is not

suitable for the set of operations.

Using previous process execution data, we applied a supervised learning technique, the

K-Nearest Neighbors (KNN) model, to analyze and predict the ideal time quantum.

With the help of this dataset, the model was trained to identify patterns and relationships

within the dataset. We compared the KNN model's predictions to the results of the

traditional RR algorithm under different conditions in order to validate it. By evaluating

the model, it was made sure that it could adjust the time quantum in order to better suit

the aspects of the process balance and increase system efficiency in general.

عدد خاص بالمؤتمرالليبي الدولي للعلوم

 (II) التطبيقية والهندسية دورته الثانية
92-03 /03 /9392

 م 10/9392/ 30 تم نشرها على الموقع بتاريخ:و م6/03/2024 تم استلام الورقة بتاريخ:

 للمجلة الدولية للعلوم والتقنية حقوق الطبع محفوظة

Copyright © ISTJ 6

Metrics for Comparison
The performance of Classical Round Robin (CRR) and Optimized Round Robin

using K-Nearest Neighbor (ORR-KNN) scheduling algorithms was evaluated using the

following key metrics:

Average Waiting Time (AWT): This parameter shows how long a process typically

waits in the queue before being executed. A lower AWT gives more effective process

handling, making AWT an important indicator of the system's responsiveness. It is

computed by taking the total number of processes and dividing it by the sum of their

waiting times. Since fewer delays mean better user experience and overall system

performance, a lower AWT is preferred.

Average Turnaround Time (ATT): The total duration of time needed for a process to

finish, from the moment it enters the system until it is completed, is known as turnaround

time. Lower values indicate faster processing. ATT gives an overall evaluation of the

scheduling algorithm's efficiency. Turnaround times, or the variation between each

process's arrival time and completion time, are summed up over all processes in order

to calculate it. This measure is very crucial for determining how quickly the system can

begin and complete tasks, especially in situations where there are a lot of processing

demands.

Number of Context Switches (NCS): When the CPU transitions between processes, it

saves the state of the running process and loads the state of the following one. An

important metric is the overall number of context transitions made throughout the

scheduling period, since too many context switches may increase burden and lower CPU

efficiency. NCS was selected to assess how well CRR and ORR-KNN balance system

resources with process execution, since reducing context changes is necessary for

maintaining CPU performance at its most effective state.

Analysis

 To evaluate how well the proposed algorithm works, let's look at some examples.

We've run simulations to compare the performance of ORR-KNN with the standard RR

in several scenarios taking into account when tasks arrive and how long they take to

complete.

Using libraries like NumPy to manipulate data, pandas to handle data matplotlib to

generate graphs and, and Scikit-learn to put the K-Nearest Neighbors (KNN) algorithm

into action. We generated a random dataset with 10 processes. Each process had random

arrival and burst times, which simulated a real-world workload for CPU scheduling.

Fig (1) shows a Gantt chart of how CRR runs things. Fig (2) displays a Gantt chart for

ORR-KNN's execution order. Table 3 compares the results of both methods.

عدد خاص بالمؤتمرالليبي الدولي للعلوم

 (II) التطبيقية والهندسية دورته الثانية
92-03 /03 /9392

 م 10/9392/ 30 تم نشرها على الموقع بتاريخ:و م6/03/2024 تم استلام الورقة بتاريخ:

 للمجلة الدولية للعلوم والتقنية حقوق الطبع محفوظة

Copyright © ISTJ 7

Fig.1. Gantt chart for CRR

Fig. 2. Gantt chart for ORR-KNN

As shown in table 3 the comparison between CRR and ORR-KNN, the CRR shows long

average waiting time, long turnaround time and more context switch. While on the other

case ORR-KNN results a major reduction in average waiting time, average turnaround

time and context switch.

عدد خاص بالمؤتمرالليبي الدولي للعلوم

 (II) التطبيقية والهندسية دورته الثانية
92-03 /03 /9392

 م 10/9392/ 30 تم نشرها على الموقع بتاريخ:و م6/03/2024 تم استلام الورقة بتاريخ:

 للمجلة الدولية للعلوم والتقنية حقوق الطبع محفوظة

Copyright © ISTJ 8

Table 3 Comparison between CRR & ORR-KNN algorithm

Results and Discussion

 Significant enhancements in CPU scheduling performance are shown when

comparing the classic Round Robin (RR) algorithm with its improved modification,

which was optimized using the K-Nearest Neighbor (KNN) machine learning model.

The application of machine learning enables dynamic alterations to the time quantum,

customized to the particular characteristics of the processes, leading to improved

scheduling effectiveness.

Key performance parameters such as average waiting time, turnaround time, and amount

of context switches all showed improvements. By analyzing previous process data and

predicting an ideal time quantum for every operation, the KNN model made it possible

to use CPU resources more effectively. This enhancement improves system

performance overall by minimizing overhead and reducing delays.

We used these key performance indicators to compare the optimized Round Robin using

K-Nearest Neighbor (ORR-KNN) algorithm versus the classical Round Robin (CRR)

algorithm in order to evaluate its efficacy(see figure 3). The results of the analysis,

which are displayed in Figure 4, indicated a considerable drop in the total amount of

context switches as well as average waiting and turnaround times. The reliability and

predictability of the mentioned advantages were confirmed by thorough tests on an array

of process sets, supporting these findings.

Fig .3. Comparison between CRR & ORR-KNN algorithm

40.8
47.7

18
28

34.9

10

0

20

40

60

average waiting time average turnaround time context switch

Comparison between CRR &
ORR_KNN algorithm

CRR (quantum time 5 ORR(predicted quantum time

ORR-KNN (predicted

quantum time)

CRR (time quantum of 5) Metric

90.33 ms 23.03 ms Average waiting time

02.23 ms 27.73 ms Average turnaround time

10 18 Number of context switch

عدد خاص بالمؤتمرالليبي الدولي للعلوم

 (II) التطبيقية والهندسية دورته الثانية
92-03 /03 /9392

 م 10/9392/ 30 تم نشرها على الموقع بتاريخ:و م6/03/2024 تم استلام الورقة بتاريخ:

 للمجلة الدولية للعلوم والتقنية حقوق الطبع محفوظة

Copyright © ISTJ 9

Fig .4. Performance metrics vs quantum time

The decreased level in average waiting and turnaround times indicates processes are

completed faster and with fewer interruptions. Context switches are being used less

frequently, which points to a more stable CPU environment with less overhead and

interruptions in operations. These results highlight the value of adding KNN to the

ORR algorithm and illustrate how machine learning, in comparison to standard RR

techniques, can greatly improve CPU scheduling efficiency.

Conclusion
 This paper presents a unique method for optimizing the round-robin scheduling

algorithm with the assistance of learning machines. By participating NumPy for data

manipulation and KNN for predictive modeling, dynamic data-driven optimization of

time quantum becomes gathered, leading to the enhancement of the performance

metrics. Our results show that machine learning is such a technique with huge potential

to improve classic scheduling algorithms. Some generalizations that might be done in

the future work are in relation to other machine learning models or an improvement in

the optimization process.

References

[1]. H. Behera, R. Mohanty, S. Sahu, and S. Bhoi, "Comparative performance analysis

of multi dynamic time quantum Round Robin (MDTQRR) algorithm with arrival

time," Indian Journal of Computer Science and Engineering, vol. 2, Sep. 2011.

[2]. A. Simon, G. Dams, and S. Danjuma, "An improved half-life variable quantum time

with mean time slice round robin CPU scheduling (IMHLVQTRR)," Science World

Journal, vol. 17, p. 2022, Jul. 2022.

[3]. P. Chitaliya, S. Kulkarni, A. Telang, D. Zaveri, A. Shah, and K. Deulkar, Time

Quantum Optimization in Round Robin Algorithm. 2023,

[4]. A. Noon, A. Kalakech, and S. Kadry, "A new Round Robin-based scheduling

algorithm for operating systems: Dynamic quantum using the mean average,"

International Journal of Computer Science Issues, vol. 8, Nov. 2011.

عدد خاص بالمؤتمرالليبي الدولي للعلوم

 (II) التطبيقية والهندسية دورته الثانية
92-03 /03 /9392

 م 10/9392/ 30 تم نشرها على الموقع بتاريخ:و م6/03/2024 تم استلام الورقة بتاريخ:

 للمجلة الدولية للعلوم والتقنية حقوق الطبع محفوظة

Copyright © ISTJ 1
0

[5]. C. S. Yusuf and S. Abdullahi, A Grouped Half-Life Variable Quantum Time Round

Robin Scheduling (GHLVQTRR) Algorithm for CPU Process. 2016.

[6]. A. Simon, A. Saleh, and S. Junaidu, "Dynamic Round Robin with Controlled

Preemption (DRRCP)," International Journal of Computer Science Issues, vol. 11,

pp. 109–117, Nov. 2019.

[7]. A. Gupta, P. Mathur, C. Travieso, M. Garg, and D. Goyal, ORR-KNN: Optimized

Round Robin CPU Scheduling Algorithm, pp. 296–304, Aug. 2021, Doi:

10.1145/3484824.3484917.

[8]. A. Abdelhafiz and A. Afaf, "VORR-KNN: A New Round Robin Scheduling

Algorithm," Al-Azhar Bulletin of Science, vol. 32, no. 2, Art. no. 12, 2021.

doi:10.21608/absb.2021.99340.1141.

