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Abstract  

       Round Robin is considered as one of the most practically recognized process 

scheduling algorithms in CPU scheduling because it is simple and fair. However, the 

efficiency of Round Robin depends a lot upon the selection of an optimal time quantum. 

If the quantum is too small, then frequent context switches are needed by the CPU; 

therefore, the overhead increases, and thus, the average waiting time for the processes 

also becomes long. As a result, system performance is reduced as more and more CPU 

time is used up in context switching, instead of task execution. it may behave similarly 

to the First Come First Serve (FCFS) algorithm if the time quantum is excessively long, 

which leads to extended average waiting time. This paper proposes an improved Round 

Robin algorithm by incorporating machine learning, which optimally determines the 

time quantum dynamically. More precisely, the K-Nearest Neighbors algorithm will be 

used, with NumPy in charge of data processing, for the runtime prediction of an optimal 

time quantum considering characteristics of processes. The experimental results showed 

a considerable improvement in the parameters of average waiting, turnaround time, and 

the number of context switches with respect to the traditional Round Robin algorithm. 

Results indicated that machine learning efficiently modifies the predictable scheduling 

algorithms to make the scheduling process adaptive and efficient in operating systems. 
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 الخلاصة 
في جدولة وحدة  واحدة من أكثر خوارزميات جدولة العمليات (Round Robin) يُعتبر خوارزمية الجولات الدائرية

شهرةً من الناحية العملية، لأنها بسيطة وعادلة. ومع ذلك، تعتمد كفاءة خوارزمية الجولات  (CPU) المعالجة المركزية
إذا كانت الفترة الزمنية قصيرة جدًا، فإن  .(Time Quantum) الدائرية بشكل كبير على اختيار فترة زمنية مثالية

إلى تبديل السياق بشكل متكرر؛ وبالتالي، يزداد العبء الزائد، ويصبح متوسط وقت وحدة المعالجة المركزية تحتاج 
الانتظار للعمليات طويلًً أيضًا. نتيجةً لذلك، تنخفض أداء النظام حيث يتم استهلًك المزيد والمزيد من وقت وحدة 

تي أولًا يخدم ه لخوارزمية من يأالمعالجة المركزية في تبديل السياق بدلًا من تنفيذ المهام. قد تتصرف بشكل مشاب
إذا كانت الفترة الزمنية طويلة بشكل مفرط، مما يؤدي الي متوسط وقت الانتظار طويل. يقترح هذا  (FCFS)أولا

البحث تحسينًا لخوارزمية الجولات الدائرية من خلًل دمج التعلم الآلي لتحديد الوقت المثالي ديناميكيًا. بشكل أكثر 
لمعالجة البيانات،  NumPy مع مكتبة (K-Nearest Neighbors) تخدام خوارزمية الجار الأقربتحديدًا، سيتم اس

للتنبؤ الفوري بوقت مثالي للفترة الزمنية بناءً على خصائص العمليات. أظهرت النتائج التجريبية تحسنًا كبيرًا في 
ارت رزمية الجولات الدائرية التقليدية. أشمتوسط وقت الانتظار، ووقت الإنهاء، وعدد تبديلًت السياق مقارنةً بخوا

النتائج إلى أن التعلم الآلي يقوم بتعديل خوارزميات الجدولة التقليدية بكفاءة لجعل عملية الجدولة تكيفية وأكثر كفاءة 
 .في أنظمة التشغيل

 
 الآلي.جولة روبن الديناميكية، جولة روبن الكلًسيكية، وقت التشغيل، التعلم  الكلمات المفتاحية:

Introduction  

          An Operating System (OS) serves as the essential interface between computer 

hardware and the user, managing and coordinating hardware resources among various 

application programs. With the evolution of modern operating systems, which have 

transitioned from handling single tasks to supporting multitasking environments, the 

role of CPU scheduling has become increasingly vital. In these environments, processes 
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run concurrently, and CPU scheduling determines how processes are assigned to the 

available CPUs, directly impacting system performance. 

The primary goal of CPU scheduling is to optimize various performance metrics, such 

as maximizing CPU utilization and throughput while minimizing response time, waiting 

time, turnaround time, and the number of context switches [1]. Scheduling can be either 

preemptive, where a process may be interrupted to allow a higher-priority process to 

execute, or non-preemptive, where a process runs to completion or voluntarily vintages 

the CPU when it requires another resource, like input/output operations. [2]. 

This paper introduces a machine learning-based approach to optimize the RR algorithm. 

By using NumPy for data manipulation and the K-Nearest Neighbors (KNN) algorithm 

for predicting an optimal time quantum, we aim to dynamically adjust the scheduling 

parameters, improving overall system performance [3]. 

Among the many CPU scheduling algorithms, Round Robin (RR) is widely recognized 

for its simplicity and fairness. The RR algorithm assigns a fixed time quantum to each 

process in the ready queue, cycling through the processes in a turn-by-turn manner. 

However, the effectiveness of the RR algorithm is heavily dependent on the choice of 

time quantum. A larger time quantum can cause the system to resemble a First Come 

First Serve (FCFS) scheduler, while a smaller time quantum may result in excessive 

context switching, leading to reduced overall efficiency [5].  

This paper introduces a machine learning-based approach to optimize the Round Robin 

algorithm by dynamically adjusting the time quantum. Utilizing NumPy for data 

manipulation and the K-Nearest Neighbors (KNN) algorithm for predicting an optimal 

time quantum, the proposed method aims to enhance overall system performance. By 

addressing the challenge of selecting an appropriate time quantum, this approach seeks 

to strike a balance between minimizing context switches and ensuring efficient CPU 

utilization, thereby improving the efficiency of the RR algorithm in diverse processing 

environments. 

 

Preliminaries 

        A program is essentially a passive structure, symbolized by a file containing a 

series of instructions. Processes, on the other hand, are active structures that are 

identified by a program counter that indicates the next instruction to be performed and 

a collection of associated resources. An executable file becomes a process as it is put 

into memory, replacing its former state as a program. These processes can then be 

assigned different statuses and be given access to system resources, including the CPU: 

NEW: A new version of the process has been developed.  

RUNNING: The CPU is actively executing the process. 

WAITING: The process is awaiting a happening, like the finish of an input/output 

operation.  

READY: The process is set up and waiting on a processor.  

 

TERMINATED: The process is no longer active after its execution is complete.  
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The process in the ready queue will be carried out by the processor. The process status 

now becomes running at this point. When the operating process is finished, it will 

terminate and change its status to ended. An interruption can occasionally cause the 

operating process to be preempted. As a result, the operating process will be forced to 

switch to the later-scheduled ready state. Because it is waiting for an I/O event to 

happen, a running process may switch to the waiting state. Once the I/O event has 

finished, the waiting process may return to the ready state. It should be remembered that 

multiple processes may be waiting and prepared at the same time, but only one process 

may be given a CPU at a time [6]. 

The term "burst time" refers to the amount of time the process needs to use the CPU. 

Arrival time is the moment a process enters the queue to be performed. Waiting time is 

the length of time a process has been waiting in the ready queue, whereas turnaround 

time is the total amount of time it takes to finish a certain process. Response time: It can 

be described as the amount of time that pass by between the process's submission of a 

request and its initial response. The scheduler chooses any process from queues within 

a routine to execute in a way that optimizes load balancing.  

 [1]. 

  

Related work 

          The Round Robin (RR) algorithm is a simple and effective CPU scheduling 

method that assigns a fixed time quantum to each process in a circular technique. While 

it is recognized for its fairness and ease of use, the RR algorithm does encounter some 

issues, such as increased context switching overhead when the time quantum is set too 

short, or it may behave similarly to the First Come First Serve (FCFS) algorithm if the 

time quantum is excessively long. Traditional optimization techniques for RR typically 

rely on static methods or situational alters. For example, [7] proposed a framework that 

enhances the time quantum through a grid search method. Their approach is statistically 

verifiable and shows better performance than existing methods. [8] presented the 

Variant On Round Robin (VORR-KNN) algorithm, which expands on the original RR 

algorithm. The VORR-KNN seeks to enhance CPU scheduling by minimizing the 

average waiting time, average turnaround time, and the frequency of context switches. 

It accomplishes this by determining the time quantum based on the median of burst 

times, allowing it to better adapt to different workloads. 

Dynamic Round Robin (DRR) algorithms have been created to overcome the drawbacks 

of static time quantum. These algorithms modify the time quantum based on the 

remaining burst time of processes, leading to more effective scheduling. [2] introduced 

the "Improved Half-Life Variable Quantum Time with Mean Time Slice Round Robin 

CPU Scheduling (ImHLVQTRR)" algorithm, which significantly improves average 

waiting time and turnaround time while also reducing context switching compared to 

traditional RR and other existing methods. Another notable development in DRR is the 

"Dynamic Round Robin with Controlled Preemption" (DRRCP) algorithm, presented 

by [6]. DRRCP reduces unnecessary context switching by implementing a dynamic 

quantum time and lowers average waiting and turnaround times. Furthermore, it features 
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a mechanism that allows processes that have completed 95% of their execution to finish 

without preemption, thereby optimizing CPU resource utilization. 

Advances in machine learning in recent times have created new opportunities for 

dynamic CPU scheduling optimization. The application of machine learning approaches 

to ascertain the ideal time quantum in the RR algorithm was investigated by [3]. Their 

study highlights how crucial time quantum is to attaining CPU use efficiency and 

fairness. They were able to forecast the ideal time quantum by using regression models 

like Polynomial and Linear Regression and classification models like Random Forest 

Classifier and K-Nearest Neighbors (KNN). Their findings showed that machine 

learning might improve system performance overall and significantly reduce average 

waiting times. 

Even with these developments, there is still little research being done on the use of 

machine learning models like KNN for CPU scheduling optimization. In order to close 

this gap, this study presents a new approach that uses machine learning to promote more 

effective process scheduling by combining KNN and RR scheduling. 

 

Methodology 

     We used Visual Studio Code (VS Code) for local development because of its strong 

Python support and sophisticated debugging features. We also utilized Google Colab, a 

cloud-based platform that offers free access to GPU and TPU processing capacity, to 

help with effective model training and experimentation.  

Ten randomly generated processes are produced via a Python script we wrote to 

imitate the process scheduling environment. The following characteristics apply to each 

process:  

Process ID: A special number is given to every process. 

Arrival Time: Generated at random within a predetermined range to mimic when 

each process accesses the system. 

Burst Time: A variable that is produced at random to indicate how long each process 

needs to execute. 

The classic Round Robin (RR) scheduling method goes through each process one after 

the other, giving each a fixed time quantum. If a process cannot complete its execution 

within this time limit, it is preempted and placed to the rear of the queue. This method 

considers scheduling fairness, but it can lead to inefficiencies if the time quantum is not 

suitable for the set of operations.  

Using previous process execution data, we applied a supervised learning technique, the 

K-Nearest Neighbors (KNN) model, to analyze and predict the ideal time quantum. 

With the help of this dataset, the model was trained to identify patterns and relationships 

within the dataset. We compared the KNN model's predictions to the results of the 

traditional RR algorithm under different conditions in order to validate it. By evaluating 

the model, it was made sure that it could adjust the time quantum in order to better suit 

the aspects of the process balance and increase system efficiency in general.  
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Metrics for Comparison 
The performance of Classical Round Robin (CRR) and Optimized Round Robin 

using K-Nearest Neighbor (ORR-KNN) scheduling algorithms was evaluated using the 

following key metrics: 

Average Waiting Time (AWT): This parameter shows how long a process typically 

waits in the queue before being executed. A lower AWT gives more effective process 

handling, making AWT an important indicator of the system's responsiveness. It is 

computed by taking the total number of processes and dividing it by the sum of their 

waiting times. Since fewer delays mean better user experience and overall system 

performance, a lower AWT is preferred. 

Average Turnaround Time (ATT): The total duration of time needed for a process to 

finish, from the moment it enters the system until it is completed, is known as turnaround 

time. Lower values indicate faster processing. ATT gives an overall evaluation of the 

scheduling algorithm's efficiency. Turnaround times, or the variation between each 

process's arrival time and completion time, are summed up over all processes in order 

to calculate it. This measure is very crucial for determining how quickly the system can 

begin and complete tasks, especially in situations where there are a lot of processing 

demands. 

Number of Context Switches (NCS): When the CPU transitions between processes, it 

saves the state of the running process and loads the state of the following one. An 

important metric is the overall number of context transitions made throughout the 

scheduling period, since too many context switches may increase burden and lower CPU 

efficiency. NCS was selected to assess how well CRR and ORR-KNN balance system 

resources with process execution, since reducing context changes is necessary for 

maintaining CPU performance at its most effective state. 

 

Analysis  

     To evaluate how well the proposed algorithm works, let's look at some examples. 

We've run simulations to compare the performance of ORR-KNN with the standard RR 

in several scenarios taking into account when tasks arrive and how long they take to 

complete. 

Using libraries like NumPy to manipulate data, pandas to handle data matplotlib to 

generate graphs and, and Scikit-learn to put the K-Nearest Neighbors (KNN) algorithm 

into action. We generated a random dataset with 10 processes. Each process had random 

arrival and burst times, which simulated a real-world workload for CPU scheduling.        

Fig (1) shows a Gantt chart of how CRR runs things. Fig (2) displays a Gantt chart for 

ORR-KNN's execution order. Table 3 compares the results of both methods. 
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Fig.1. Gantt chart for CRR 

 

 
Fig. 2. Gantt chart for ORR-KNN 

 

 

As shown in table 3 the comparison between CRR and ORR-KNN, the CRR shows long 

average waiting time, long turnaround time and more context switch. While on the other 

case ORR-KNN results a major reduction in average waiting time, average turnaround 

time and context switch.  



 

عدد خاص بالمؤتمرالليبي الدولي للعلوم 

  (II) التطبيقية والهندسية دورته الثانية
92-03  /03  /9392 

  

 م 10/9392/ 30 تم نشرها على الموقع بتاريخ:و م6/03/2024 تم استلام الورقة  بتاريخ:

 

 للمجلة الدولية للعلوم والتقنية  حقوق الطبع محفوظة
 

Copyright © ISTJ   8 

 

 

Table 3 Comparison between CRR & ORR-KNN algorithm 

 

Results and Discussion 

       Significant enhancements in CPU scheduling performance are shown when 

comparing the classic Round Robin (RR) algorithm with its improved modification, 

which was optimized using the K-Nearest Neighbor (KNN) machine learning model. 

The application of machine learning enables dynamic alterations to the time quantum, 

customized to the particular characteristics of the processes, leading to improved 

scheduling effectiveness. 

Key performance parameters such as average waiting time, turnaround time, and amount 

of context switches all showed improvements. By analyzing previous process data and 

predicting an ideal time quantum for every operation, the KNN model made it possible 

to use CPU resources more effectively. This enhancement improves system 

performance overall by minimizing overhead and reducing delays.  

We used these key performance indicators to compare the optimized Round Robin using 

K-Nearest Neighbor (ORR-KNN) algorithm versus the classical Round Robin (CRR) 

algorithm in order to evaluate its efficacy( see figure 3). The results of the analysis, 

which are displayed in Figure 4, indicated a considerable drop in the total amount of 

context switches as well as average waiting and turnaround times. The reliability and 

predictability of the mentioned advantages were confirmed by thorough tests on an array 

of process sets, supporting these findings. 

 

 
Fig .3. Comparison between CRR & ORR-KNN algorithm 
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Fig .4. Performance metrics vs quantum time 

 

The decreased level in average waiting and turnaround times indicates processes are 

completed faster and with fewer interruptions. Context switches are being used less 

frequently, which points to a more stable CPU environment with less overhead and 

interruptions in operations. These results highlight the value of adding KNN to the 

ORR algorithm and illustrate how machine learning, in comparison to standard RR 

techniques, can greatly improve CPU scheduling efficiency. 

 

Conclusion 
   This paper presents a unique method for optimizing the round-robin scheduling 

algorithm with the assistance of learning machines. By participating NumPy for data 

manipulation and KNN for predictive modeling, dynamic data-driven optimization of 

time quantum becomes gathered, leading to the enhancement of the performance 

metrics. Our results show that machine learning is such a technique with huge potential 

to improve classic scheduling algorithms. Some generalizations that might be done in 

the future work are in relation to other machine learning models or an improvement in 

the optimization process. 
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